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$ Joseph Henry Laboratories of Physics, Princeton University, Princeton, N J 08544, USA 

Received 25 September 1980, in final form 12 May 1981 

Abstract. The critical behaviour of linear Q4 models with global symmetry O ( N )  x O ( M )  
and U(N) x U(M) is studied at one-loop order in 4 - E dimensions. Applications to physical 
systems include achiral and chiral double-strand polymers, when N = M = 0. There exist 
infrared stable fixed points only if N and M are sufficiently small. Some special cases of 
interest include (1) 0(-2)  xO(1)  and U(-1) x U(1) which have classical exponents, (2) 
O(1) x 0(1) and O(-2) x O(-2) (for example) which exhibit a ‘merging’ of critical 
exponents, (3) M finite, N -+a which is also calculable in a 1/N expansion. 

1. Introduction 

Vector O4 models with global O ( N )  symmetry have been the subject of much study 
(Wilson and Fisher 1972, BrCzin et a1 1973, 1974). Natural generalisations include 
higher representations of a simple group (Amit 1976, Priest and Lubensky 1976, Amit 
and Roginsky 1979) and semisimple groups. Previously we sketched the results of an 
expansion in 4 - E  dimensions for the semisimple groups O ( N )  x O ( M )  and U(N) x 
U(M) in the vector representation (Pisarski and Stein 1981). In this work we consider 
these models in detail. 

The results are obtained from an expansion to lowest order in E .  In broad outline 
they are analogous to those found for NM models (BrCzin et a1 1974, Aharony 1976). 
There are always four fixed points, of which one and only one is infrared (IR) stable for 
sufficiently small values of N and M. For many values of N and M two of the fixed 
points become complex, and there is no IR stable fixed point. There is always an IR 
stable fixed point in the NM model, although its absence is common to numerous 
related systems (Aharony 1976, Bak et a1 1976). 

There are several physical systems related to our model. N = M = 0 corresponds to 
double-strand achiral and chiral polymers for O ( N )  x O ( M )  and U(N) x U(M) (de 
Gennes 1972). Similar to an O(-2) vector (Balian and Toulouse 1973), we find that the 
critical exponents for O(-2) x 0(1) and U(-1) x U(1) are classical. U ( l )  x U ( l )  models 
are used to describe a 3Pz superfluid in a strong magnetic field (Hoffberg et a1 1970). At 
M = 0, N # 0 our model must correspond to some sort of quenched random magnet, in 
analogy to the same limit in the NM model (Aharony 1976, Grinstein and Luther 
1976). 

$ Address as of July 1, 1981: Institute for Theoretical Physics, University of California, Santa Barbara, C A  
93106, USA. 
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The paper is organised thus. In 9 2 we discuss N = M = 0 and multi-strand 
polymers. Section 3 reviews the renormalisation group techniques needed (BrCzin et al 
1974). We show in § 4 how an N-‘ expansion about N = CO, M finite and non-zero, 
allows a simple check. The critical behaviour for O ( N )  x O ( M )  and U(N) x U(M) is 
considered in 9 4  5 and 6. We discuss in particular small values of N = M. For example, 
occasionally critical values exhibit identities between 7 and y, even with four distinct 
fixed points. This merging of critical values (not points) is easy to understand for 
0(1) x 0(1) and U( l )  x U ( l )  but less obvious for 0(-2) x 0(-2) and U(-1) x U(-1). 
Lastly, the critical limit for N + 00, both for M # 0 and M = 0, is given in § 7. The 
instance N + 00 and M = 0 is of note as there are two IR stable fixed points, only one of 
which is physical. 

Paterson (1980) has also studied U(N)  x U(N)  models below four dimensions, with 
results that overlap ours. 

2. N = M = 0 and double-strand polymers 

de Gennes (1972) first noticed that the space-time path of an O(N)  vector field can be 
directly identified with a single-strand polymer if N = 0. Q4 interactions represent the 
repulsive self-interaction of a long polymer bending back on itself. The caveat N = 0 is 
necessary to eliminate virtual 4, loops which occur for quantum fields. 

The propagator for an O(N)  X O ( M )  vector @ is drawn as two dissimilar lines. The 
global symmetry restricts the renormalised Lagrangian density (equation (3.1)) to be a 
sum of bilinears in @‘a. The two couplings are proportional to (Tr@T@)2, with 
strength gl, and Tr(aT@)’, with strength gz. Two typical vertices for gl and g 2  are 
illustrated in figures l ( a )  and 1(b) with many other terms generated by the full 
Dyson-Wick expansion. Note that the coupling of figure l ( b )  is peculiar to the 
symmetry being semisimple, in that if g2 = 0, the coupling of figure l ( a )  is that for an 
O(N”M)  vector. 

‘;) I I;: \ 
(n! Ib! 

Figure 1. ( a )  (Tr(QTQ))’ vertex. ( b )  Tr(QT@)’ vertex. 

Hence an O ( N )  x O ( M )  vector at N = M = 0 corresponds to a polymer ribbon, 
where the ribbon is one of two dissimilar strands. For example, figure l ( a )  illustrates 
two ribbons which touch without the exchange of strands. Figure l ( b )  shows two 
ribbons which touch and entangle by exchanging strands between the ribbons. 

Calculation ( Q Q  5 ,  6 and 7) shows that at the critical point the ribbons completely 
untangle: the infrared stable fixed point is that for an O ( N )  vector at N = 0, g: = 0. We 
emphasise that the identity between polymers of a single-strand and multi-strand 
ribbons holds only at the critical point, where the polymer is infinitely long. For any 
physical polymer of finite length, non-universal terms will show the entanglement of 
ribbons. 



RG and global G x G' theories about four dimensions 3343 

That very long ribbons untangle themselves is easily understood. It is simple for a 
ribbon to hit itself as in figure l ( a ) .  In contrast, the probability of figure l ( b )  occurring 
vanishes as the ribbon becomes infinitely long, since figure l ( b )  represents the exchange 
of two very long strands between ribbons. 

Shortly we give many examples of multi-strand ribbons, related to the N = 0 limits 
for tensor fields of O ( N )  and U(N), etc. In all cases we expect long ribbons to untangle, 
with the fixed point of an O(0) vector. Again, the properties of finite ribbons will 
depend on the number, similarity and chirality of the strands in the ribbon. 

Ribbons with similar strands are formed from the tensors of O ( N ) .  Tensors of 
second rank are given by N x N matrices Q, which transform with definite sign under 
transposition of indices, either ( 1 )  Q, symmetric, Tr Q, = p ( p  = -N, . . . , + N ) ,  or (2) Q, 
antisymmetric. For the polymer, transposition is just the exchange of strands in the 
ribbon. Hence a symmetric field at N = 0 describes a double-strand ribbon with two 
similar strands. An antisymmetric field is unphysical at N = 0, as the exchange of 
strands gives -1. Generally, tensor fields interact through terms as Tr ( P 3 .  However, 
for a polymer Tr  a3 is unphysical, as it represents strands which appear or disappear. 

Proceeding to the unitary group allows strands to have chirality, such as results from 
the helical structure of a strand. Thus a ( U ( N ) ) k  vector at N = 0 represents a k-strand 
ribbon, where all strands are dissimilar but have the same chirality. The tensors of 
U(N) are chosen from matrices which have definite sign under transposition and 
complex conjugation. The three second-rank tensors are given by ( 1 )  Q, Hermitian, 
Tr Q, = p ,  (2) Q, symmetric and ( 3 )  Q, antisymmetric. For a polymer, complex con- 
jugation reverses the chirality of each strand. At N = 0 the double-strand ribbons are 
then ( 1 )  two strands of opposite chirality, (2) two strands of the same ch'irality (as for the 
double helical structure of DNA) and (3) unphysical. 

Lastly, there is the N = 0 limit of symplectic fields. Whatever chirality exists for 
symplectic tensors at N = 0, it must reflect that the series of classical Lie groups O ( N ) ,  
U(N), Sp(N) ends with the symplectic group. 

3. Renormalisation group machinery 

For an O ( N )  x O ( M )  vector field Q, the bare Lagrangian is taken as 
2 F  

L = $ Tr(a,Q,T)(d,Q,) +- 8T ' [gl(Tr CpT@)2+g2Tr(Q,TQ,)2]+(Tr QTQ,)H(.x). (3.1) 4! 
The bare field (0) and couplings (g1,2) are related to their renormalised values (denoted 
by a tilde) as 

0 = 236, g1,2 = g"1,2/z:. (3.2) 
Expressions for the critical values 77 and y are given by BrCzin et a1 (1973).  

In general, there are four fixed points where p? = 0: 

g: = (0, O ) ,  

g g  = (6&/(NM + 8), 0) for O ( N )  x O ( M ) ,  

for U(N) x U(M), 
(3.3) 

g ;  = ( 3 & / ( N M + 4 ) ,  0 )  

and two others, g:+ and gg-. This fixed point gp* become complex for N and M 
sufficiently large (§§ 5, 6, 7) .  
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To illustrate the conditions for the stability of a fixed point, assume for the moment 
only one coupling constant. A running coupling g(A) is given by 

p(g )  = d g(A)/d In A .  

If we define the subcritical exponent w as w = dp/dg" 1 g = g", then for g" near g'* 

@ ) - g * = h W .  (3.4) 

In the infrared limit, A + 0, so that for an infrared stable (IRS) fixed point w > 0. With L 
coupling constants, w becomes an L x L matrix such that a fixed point is IRS when the 
eigenvalues w of w satisfy Re  w > 0. 

Note that all one-loop results, and w in general, are independent of renormalisation 
convention. 

We present in $0 5, 6, 7 a detailed analysis for the domains of attraction to fixed 
points for O ( N )  x O ( M )  and U ( N )  x U ( M )  in the ultraviolet (uv) and IR limits. We 
iiivariably found it easiest to determine the domains of attraction by numerical analysis. 

The fixed point structure in the uv is simple: g $  is always stable when E > 0. This is 
just the statement that a4 theories are asymptotically free in 4 - E  dimensions. Let the 
domain of attraction in the uv to gx be defined as Duv. In Duv, if a field @ is scaled by 
@-+ K @ ,  then the interaction term in the renormalised Lagrangian, L,,,,, will behave as 

L,,, - ~ ~ - ' [ g l ( ~ ) ( T r  + g 2 ( K )  Tr(Q,T@)2]. (3.5) 
The quarticform L,,, is positive in the region R +, where R + = ( g 2  > 0 ,  gl  + g2/N > O}.  In 
the region D+, which is the intersection of Duv and R+, equation (3.5) for L,,, 
establishes the boundedness of the energy from below. It is to be emphasised that the 
condition g1,2 E D+ is a sufficient but not a necessary condition for the energy to be 
bounded from below. 

The distinction is significant in understanding the IR fixed point structure. If there 
exists an IRS fixed point, as is true when N and M are not too large, there is always in 
addition a twice unstable g z  and two saddle points. The IRS g" can be either g g ,  gg+ or 
gg- ,  but is 'usually' g g  (09 5, 6 ,  7). Now if there exists an IRS fixed point, a domain of 
attraction in the IR limit, DIR, can be defined. For example, if we set the renormalised 
coupling g2 equal to zero by fiat, the O ( M )  x O ( N )  symmetry becomes O(M x N ) .  Since 
there is an IRS fixed point for all N in an O ( N )  model (in a vector representation), DIR 
will always include the gl  axis. Hence at least in the intersection of D+ and DIR 
(D* E D+ f I  DIR,  where D* is in general some section of the first quadrant), we can 
confidently claim perturbation theory is valid in both the uv and IR limits. 

In many instances there is no IRS fixed point. In the IR limit, the critical trajectories 
are driven out of D+ into the second quadrant. As we are driven into a region where the 
energy is not bounded from below, the stable ground state will not be Q, = 0. Thus due 
to quantum fluctuations the phase transition will be first order (Bak et a1 1976). 

The first-order phase transition in U ( N )  x U ( N ) ,  for N > 2, has also been studied by 
Paterson (1980). 

4. An N-' expansion of O ( N )  x O ( M )  

In this section we work out the critical limit of O ( N )  x O ( M )  for N + CO with M fixed by 
an N-' expansion, in a manner familiar from the vector model (Brtzin and Zinn-Justin 
1978). 
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To begin with, we shall find it useful to redefine the coupling constants and explicitly 
introduce a mass term so that the bare Lagrangian is given by 

L =$Tr[(a,@’)(a,Q,)+ m2Q,TQ,]+$G:(Tr Q,*Q,)’+$G: Tr(QTQ,)’. (4 .1)  

Auxiliary fields w1 and w2,  where w2 is an M x M matrix, are introduced to integrate 
out the original Q, fields and obtain 

(4 .2)  

w 1 =  6 1  + w y ,  = G28’i + w;u. i j .  (4 .3)  

f i z =  m 2 + 2 G l G 1 + 2 G z G z .  (4.4) 

LefE = $N Tr ln[(-a2 + m2)Si’ + 2G1w1Sii  +2Gzw2]-$w: - ; ( w $ ) ~ .  

We then expand about a stationary point with constant field (31  and &Sii, 

The renormalised mass f i ,  which is a finite quantity, is given by 

Coupling constant renormalisation will also be required. Note that the uv 

At a stationary point of GI  and G2, 
regularisation of the theory requires the physical mass to be non-zero. 

Mass renormalisation is imposed by the conditions 

m2/(G1)2 = f i 2 / ( G f ) 2  - 2 N M  Tr(l/-d2) 

and 

m2/(G2)2 = f i 2 / ( G ; ) ’ - 2 N  Tr(l/-a2). 

Using the identity 

1 1 
- Tr 3 = - f iz  Tr 

1 
Tr -az+ f i  (-a2 + A 2)(-a2) ’ 

the stationary point equations (equations (4.5)) become 

and 

(4.5b 

(4 .6a )  

(4.6b) 

(4 .7a)  

(4 .8a)  

The critical point is determined by those values for GT and GZ such that 

1 / G 1 =  1/GZ= 0. 

These two coupled equations give the fixed points in the limit N + 00, M # 0: 

g;  = ( 6 E I N M  O), d+ = ( 0 , 6 E I N ) ,  gg- = ( - 6 & / N M ,  6 ~ l N ) .  (4.9) 
The unitary group is treated similarly. 
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5. O ( N )  X O ( M )  critical behaviour 

Using the Lagrangian of equation (3 .1) ,  we find to one-loop order 

gl = g l  + [$(NM + 8 ) g :  + $(N + M + l ) g l g z  + ig:]a,  

g " ~  = gz+[2glg2+~(N+M+4)g:la,  
( 5 . 1 )  

where a = 1 / & .  Hence 

pi = E g i  + [A(NM + 8 ) g :  + $(N + M + l ) g i g 2  +&I, 

Pz = -Egz  + [ 2 g i g z  + A(N + M  + 4)g:l. 
(5 .2 )  

The first contribution to wavefunction renormalisation occurs at two-loop order 

N + M + 2  N + M + 1  NM + N + M + 3 
36 g1gz + 9 g1+ i 18 

& = I +  

so that 

N M + 2  N + M + l  N M + N + M + 3  
y 3 = -  g1+ g 1 g z +  144 g z ,  36 72 

(5.3) 

(5.4) 

with b = -1188 and 7 = y ; .  Finally, we calculate the renormalisation constant asso- 
ciated with insertions of the operator Tr aT@: 

( 5 . 5 )  2, = 1 + [$(NM + 2 ) g l  + i ( N  + M + l ) g 2 ] a ,  

y = 1 + &(NM + 2)gT + &(N + M + 1)g:.  

so that 

( 5 . 6 )  
Finally, we calculate the stability matrix wii to find 

where the real part of both eigenvalues for w must be positive for the fixed point to be 

Besides g:, which is always uv stable, gp* is IR stable for NM < 4. The two other 
IRS. 

fixed points are given by the formula 

( g T ) 6 * = -  ; [ E  - i(N + M + 4xg; Is*],  ( 5 . 8 )  

( g ; ) S * / E  = 6 [ ( N M -  10)(N + M + 4 )  + 36]* 36[(N + M ) 2 -  12NM -4(N + M ) +  52]1'2 

X[(NM-16)(N+M)2+8(NM-7)(N +M+2)+576]-' .  

One immediately notices that the g:+ will be complex when 

( N  + M ) 2  + 5 2 < 12 NM + 4 ( N  + M ) .  (5.9) 

If both this equation and NM > 4 are satisfied, then there is no IRS fixed point. Note 
that g t -  will be real if the limit N + CO, M finite is taken (§ 7) .  

We illustrate the critical behaviour of this O ( M )  x O ( N )  model by considering the 
special cases when M = N = -3 ,  . . , , +3 (see table 1) .  It is interesting to see that the 
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critical behaviour is strongly dependent on N within these values. Indeed, the 
behaviour of the theory for all other values of M and N is well illustrated by the cases 
below. One atypical example, which is considered in some detail in 5 7, is that of N -+ '0, 

M finite. 
There are two questions which will be considered in the analysis. One is simply 

where the renormalisation group trajectories flow in the IR limit; hence, is D* of finite 
measure in the (SI, gz) plane? The other is to test various conjectures about inequalities 
between critical exponents. Brezin eta1 (1974) have conjectured that the greatest value 
of 77 corresponds to that of the IR stable fixed point. We find this violated in the limit 
N -+ a, M < 1, but not for many other values of N and M ;  in particular, the conjecture 
is easily verified for all cases in table 1. Analogously, it is reasonable to ask whether the 
greatest value of ( y  - l) /s  always corresponds to the IRS fixed point. This is disproved 
in the circumstances N = M = -3. 

We now comment on the examples of table 1. 
N = -3: The case is interesting because it is the only integer (albeit negative) for 

which the IRS fixed point is not gp*, but is rather gg-. Consequently, the structure of D* 
is distinctive for this class of models (figure 2). The structure of D* for N = -3 is 
characteristic of all N in that it is a curvilinear region of the first quadrant with gz,  gz 
and gg* as the four 'corners' of D*. The flow of critical trajectories in the infrared limit 
can be similarly understood. The four fixed points form an approximate rectangle. In 

V 
I 1 - 1  I 

9 L  08 

4 ' E  

Figure 2. RG flows for N = M = -3. 
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this rectangle, the absolute maxima (g: )  and minima (the IRS fixed point) lie on a 
diagonal, flanked at the remaining corners by the two saddle-point fixed points. Some 
reflection allows one to conclude that exactly this structure of D" must  be true in order 
for'these to be an IRS fixed point. 
N = -2: The stability of the fixed point gg ban be seen from the w matrix only when 

N2 is strictly less than four; hence N = 1 2  are boundary points for the IR stability of gg. 
At N = *2, gg coincides with gz-. The stability matrix evaluated at gg has one zero 
eigenvalue, so that in order to determine the IR stability of gg ,  we must look directly at 
the (il, &) trajectories in the IR limit. This is provided by figure 3, in which the stability 
of gg (=gg+) is immediately seen. 

There is one other comment to be made about N = -2. At thiS order, there is a 
'merging' of critical exponents: 

gg = gz+,  77s- = 77a(=O),  Ys- = -Ye (= 1). (5.10) 

It would be interesting to see whether g t -  possesses classical exponents to all orders in 
E .  

N = - 1 : This is qualitatively similar to N = 0. 
N = 0: The IRS fixed point is gg ; D" was given in Pisarski and Stein (1981). The 

stability of gg proves the identity of critical indices for the vector representations of 
O ( N )  and O(N) x O(N) at N = 0. 
N = +1: The critical trajectories and D" are similar to those of N = 0. A point of 

note is that, to this order in E ,  

770 = TS+, Yp = Y s + ,  77s- = 77,(=0), Ys-=Y*(=l). (5.11) 

It is straightforward to show that these identities persist to all orders in E .  For 
N = M = 1, and only then, the Lagrangian (3.1) is equivalent to an 0(1) vector field with 
coupling g+ = gT + g;. All (isotropic) critical indices must be a function only of g+. The 
above identities then follow directly from 

g ;  = g:+, g;- = g:(=o).  (5.12) 

The same identities can be proved for U(1) x U(1): see also U(-1) XU(-1). 
N=+2: Similar to N =  -2, w,, has one zero eigenvalue, so that the explicit 

trajectories must be examined. In contrast to N = -2, we see from figure 4 that the 
fixed point gg ( = g i + )  is IR unstable, DIR is then of measure zero and there is no IRS 
fixed point. (In fact, this difference is not unexpected. In both cases, gg = gg+. When 
N = -2, the IR unstable fixed point gz-  is in the first quadrant. This ensures that DIR 
extends into the first quadrant, so that D" is of finite measure. When N = +2, gg- is in 
the fourth quadrant, so DIR does not extend into the first quadrant, andD* consists only 
of the positive gl axis. DIR will of course have a finite measure in the fourth quadrant, 
but this is outside the region of interest.) 

N = +3: This case is typical for all N b 2.1: the g t -  are complex, so there is no IRS 
fixed point. The coupling constant trajectories are similar to those for N = +2: starting 
near the i1 axis in the first quadrant, the trajectories are driven off into the depths of the 
second quadrant. 

Returning now to the general O ( M )  x O(N) model, we note one other case of 
interest; namely the theory with classical (gaussian) exponents. In the vector O(N) 
model, this occurs for N = -2, which has a non-trivial stable fixed point at g* = E whose 
exponents are strictly classical to all orders in E :  77 = 0, y = 1 (Balian and Toulouse 
1973, Emery 1975). For O(N) x O(M) ,  we see from equations (5.4) and (5.6) that the 
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U 

!L 1 

06 - I /  / 

w . 
ol" 

0 4  

02 

0 v.0 

Figure 3. RG flows for N = M = -2; note gg is IRS. Figure 4. RG flows for N = M = +2; note gg is not 
IRS. 

exponents of the stable fixed point are gaussian to lowest order in E for NM = -2, when 
the stable fixed point is the vector one. Upon closer examination, it becomes clear that 
all  fixed points will have gaussian exponents for N = -2, M = 1 or N = 1, M = -2. This 
will in fact be true to all orders in E .  The stable fixed point here is again g i  = ( E ,  0 )  and 
the unstable fixed points are g:+ = ( S E ,  $ E )  and gg- = ( $ E ,  - $ E ) .  It is of interest to note 
that (g:+)l + (g:+)2 = ( g g ) l  + (g ; )2  and similarly for g: and g:-. 

6. U(N) x U ( M )  critical behaviour 

In all cases, the critical behaviour of U(N)xU(M) will be very similar to that of 
O ( N )  x O ( M ) .  Consequently, we shall be brief. The renormalised couplings are found 
to be 
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leading to the p functions 

The wavefunction renormalisation is 

Z3= 1 -[&(NM+l)g:-&(N+M)glgz-&(NM+l)g:]b (6.3) 

7 3  = &(NM + 1)g:  + &(N +M)glgZ + &(NM + 1)g; .  

z4 = 1 + [ ~ ( N M  + l )g ,  + S ( N  + ~ ) g ~ ] a ,  

from which we find 

(6.4) 
Finally, 

(6.5) 
so 

y = 1 + $(NM + l ) g  T + &(N + M)g;. 

The stability matrix wij is 

2NM+8 2N+2M .+ 2N+2M 
gT +2gT 3 

2N+2M * 
gT + g 2 - E  

2gT + g 2 - e  
2gT 

The theory will again possess an uv stable fixed point g ;  at the origin. The ‘vector’ 
fixed point is g* = (3&/(NM+4),  0 ) ,  which is IRS when NM <2.  The two other fixed 
points gg+ are given by the equations 

(gT  1s” = -W +M)(g;  )s*I, 
( g z ) 8 *  3(N+M)(NM-5)*9[(N+M)’-  12(NM-2)]”2 

(6.8) -- - 
& (N+M)’(NM-8)+ 108 

The gg+ will be real if 

( N + M ) ’ b  12(NM-2). (6.9) 
When this is not satisfied, there is no IRS fixed point within perturbation theory. 

We illustrate the critical behaviour for U ( N )  x U ( M )  by N = M  = -1, 0 ,  +1, +2 in 
table 2. When N = - 1 , O  and +1, g $  is the IRS fixed point; gg+ or g f -  are never IRS fixed 
points. When N =-2,  g g  is not IRS, and there is no IRS fixed point. The critical 
trajectories and D” for U ( N )  x U ( N )  with N = - 1 , O ,  1 and 2 are very similar to those 
for O ( N ) x O ( N )  with these values of N. For the case U ( l ) x U ( l )  the identities 
(equation (5 .11) )  are true, just as in the 0 ( 1 )  X 0 ( 1 )  case. The IR stability of g $  when 
N = 0 demonstrates the equivalence at the critical point between a vector U(0) x U(0)  
and a vector O(0) theory. 

A merging of critical exponents similar to that for N = 1 occurs when N = -1. At 

770 = 77s-, Yo = Ys-7 77s+ = 77,(=0), Ys+ = Ye (= 1).  (6.10) 

These identities can be proved to all orders in E by the following simple argument. We 
assume that the only difference between a U(-1) and a U(+1) theory is that for 

N = - 1  
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N = -1, Tr 1 = -1. Consequently, we then write the Lagrangian for the U(-1) x U(-1) 
theory in terms of a single U( 1) field with one coupling constant g-  = g l  - g2.  Hence the 
identities (equations (6.10)) are a consequence of the relations 

g s  = gs- ,  g ;  = gs.. 

Finally we note that the isotropic critical exponents are free to all orders in E for 
U( l )  x U(-1), as for 0(-2). 

7. Critical behaviour when N + co 

Up to this point we have discussed G x G' models only for small values of N and M. We 
now examine the limit for O ( N )  x O ( M )  where one index N is taken to infinity with M 
fixed; the unitary group behaves in much the same way. The fixed points were 
calculated in this limit (for M # 0) by means of a 1 / N  expansion in 0 4. With M f 0, gi+ 
is the IRS fixed point. One feature of the limit N + CO is that DIR includes the entire first 
quadrant. A representative example of the critical trajectories and D" is given in figure 
5 .  

LJ . 
G 

0 0 2  0 4  0 6  08 10 

g /E 

Figure 5. RG flows for M = 2, N = 10 000. 

w3 

The critical exponents in this limit are given by 

)& M + l  2 

4N 2NM 77s+ = - E ,  
1 2  

7 7 P = z E  9 4N 
1 

yp = 1 + F E ,  ys+ = 1 +is, ya- = 1. 
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The greatest 77 does not belong to the IRS fixed point when M < 1. Further, to leading 
order in E and 1/N but for arbitrary (non-zero) M, these critical exponents satisfy the 
merging relations 

770 + 77s- = 77s' f V m ,  Yp = Ys+, Ys -  = y m .  (7.1) 

An identical set of merging relations is found for the unitary group. 
The special case N -+ 03, M = 0 is of particular interest since to one-loop order it 

appears that, contrary to all other examples presented here, there are two IRS fixed 
points. It is easy to appreciate intuitively why the fixed points gz+ and g i  must both be 
IRS at N + CO, M = 0. To begin with, consider beginning at M small but non-zero. The 
position of gz+ is unaffected by settingM = 0. Indeed, critical trajectories in the (dl, &) 
plane near gg+ for M # 0 would be expected to behave similarly as M +  0, so gg+ 
remains an IRS fixed point as M + 0. On the other hand, we know that g; is IRS for 
NM < 2; clearly if M is strictly zero then gg is IRS for all N, including N + 03. 

The critical trajectories and D* are shownfor N + 03, M = 0 in figure 6. Besides the 
IRS gg and gg+, there is the stagnation point gg-. The fixed point gg- is not quite a 
saddle point: there is one positive eigenvalue for U,, and one zero eigenvalue at gz-. The 
existence of one stagnation point is necessary if there are to be two IRS fixed points. 

The existence of two IRS fixed points is not necessarily a counterexample to 
universality. Aharony et a1 (1976) have studied the effects of the cumulants of the 
disorder distribution in the NM model and have concluded that the NM counterpart to 
our vector fixed point (gg) is unphysical in that it can never be reached under RG 

iterations. The point is that the initial values of d1 and gz must alwhys lie in the domain 
of IR attraction of g;+, so that the critical properties of the theory are described by the 
exponents of gg+. 

I 

0 8 1  

P " - 
I A - 1  " 1 0  0 2  0 4  0 6  0 8  

g,'E 

Figure 6 .  RG flows for M = 0 ,  N = 10 000. 
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The critical indices for N + 00, M = 0 are 
1 2  

q8+ = ( 1 / 4 N ) c 2 ,  q8-=256& 9 

1 2  
q p  =z& , 

1 1 (7.2) 
y p  = 1 + % E ,  ys+ = 1 + F E ,  ya- = 1 +A&. 

Only the critical exponents of gg+ appear to be approaching those of the spherical 
model; gg clearly has a new set of critical exponents. 

Finally, we would like to discuss the critical behaviour in the planar limit N = M + 
00. In order that planar graphs dominate as N + 00, it is natural to scale the coupling 
constants as 

g1 = a / N 2 ,  g 2  = b / N .  

In the limit N + CO there are three non-trivial fixed points, two complex, and the real 
fixed point is IR unstable: 

g g : a = 6 , b = 0 ,  g g + :  a =3(-1*&i), b = 3 ;  

for O ( N )  x O ( N ) .  Hence the planar theory is not calculable perturbatively in the IR 
limit. 
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